地址:江苏省常州市武进区科教城常武中路801号现代工业中心1号楼2层 邮编:213164
技术支持:常州大学信息化建设与管理中心
基于改进U-Net网络的细小裂纹检测
发布时间: 2023-04-12 访问次数: 10
《基于改进U-Net网络的细小裂纹检测》
技术简介:
针对复杂背景下细小裂纹图像检测难、噪声干扰多和裂纹宽度信息易丢失的问题,提出一种基于U-Net改进的方法。利用残差块解决网络退化,加入BN层改善梯度弥散,融入深度可分离卷积以及高尺度的转置卷积,实现特征信息由浅入深的传递;改进注意力机制,实现细节特征的优化;延伸U-Net特征向量长度,在底部加入由最大池化层、小尺度深度可分离卷积与上采样层构建的层融合模块,实现分辨率和感受野之间的平衡。实验结果表明,在客观标准下,改进的方法比U-Net的IoU的值提高0.1873,Recall的值提高了0.1127,Precision提高了0.1359,F1-score提高了0.0687,并且实验结果皆优于其他方法对于U-Net的改进,减少了伪分割现象,完成对细小裂纹分割,获得更加精细的裂纹宽度信息。
研发人员:封晓晨;李宁;顾玉宛;符心宇;王雨生;徐守坤;