地址:江苏省常州市武进区科教城常武中路801号现代工业中心1号楼2层 邮编:213164
技术支持:常州大学信息化建设与管理中心
基于集成学习的油藏井筒一体化智能诊断模型
发布时间: 2023-04-12 访问次数: 11
《基于集成学习的油藏井筒一体化智能诊断模型》
技术简介:
目前油藏、采油依托各自专业数据和信息系统进行异常问题的分析,对于两个系统间的复杂关联关系考虑不够,导致生产异常的诊断仍较局限,治理措施针对性不强。基于随机森林算法和卷积神经网络算法集成学习构造了油藏井筒一体化智能诊断模型,根据注水失效、泵漏失等不同油藏、井筒问题,以基于随机森林的决策树分析油藏异常工况,卷积神经网络诊断井筒异常故障,通过集成学习方法将两类分类器结合起来,形成一体化诊断。现场验证结果表明,所建立的方法通过集成学习提升了单分类器性能与范化能力,应用准确率达到90%以上,实现了油藏和井筒问题的一体化诊断,为油田智能化管控提供了有力支撑。
研发人员:杨耀忠;邴绍强;马承杰;于金彪;王相;李秉超;景瑞林;孙召龙;