地址:江苏省常州市武进区科教城常武中路801号现代工业中心1号楼2层 邮编:213164
技术支持:常州大学信息化建设与管理中心
一种基于改进Unet网络的甲状腺结节分割方法
发布时间: 2023-04-12 访问次数: 12
《一种基于改进Unet网络的甲状腺结节分割方法》
技术简介:
本发明涉及图像分割技术领域,尤其涉及一种基于改进Unet网络的甲状腺结节分割方法,包括:对公共甲状腺超声图像数据集进行图像大小统一、随机翻转、旋转和增强对比度操作;构建改进Unet网络,首先在Unet网络的前3个下采样卷积中增加自注意力残差连接块;其次在第4个下采样后增加高低频自注意力自适应融合模块;最后在高低频自注意力自适应融合模块之后接入语义增强模块;使用argmax判断像素值属于结节还是背景。本发明为了帮助医生进行准确的甲状腺结节分割,对结节区域进行精确的定位,同时增强全局上下文与局部信息,降低甲状腺结节分割的误差。
研发人员:蔡成杰;毕卉;邹凌;吕继东;姜一波