地址:江苏省常州市武进区科教城常武中路801号现代工业中心1号楼2层 邮编:213164
技术支持:常州大学信息化建设与管理中心
基于改进ELMD和多尺度熵的管道泄漏信号识别
发布时间: 2022-08-14 访问次数: 14
《基于改进ELMD和多尺度熵的管道泄漏信号识别》
技术简介:
为预防城市管道泄漏事故,准确提取管道泄漏信号的特征,首先提出一种改进的总体局域均值分解(ELMD)与多尺度熵的管道泄漏信号识别方法,通过峰值波形匹配延拓法处理端点处的信号,减弱端点处信号分量的畸变、失真;然后对管道原始泄漏信号进行ELMD分解,得到一系列乘积函数(PF),计算各PF分量的多尺度熵值,根据熵值的大小筛选出含有主要泄漏信息的PF分量,消除背景噪声的影响;最后构建反向传播(BP)神经网络,并识别泄漏信号。结果表明:该方法减少了分解后的误差,能够实现管道泄漏的检测,与未改进的ELMD方法相比,泄漏信号的识别率更高。
研发人员:郝永梅;杜璋昊;杨文斌;邢志祥;蒋军成;岳云飞;