基于活动轮廓模型的图像分割改进算法

   发布时间: 2022-08-14    访问次数: 13

《基于活动轮廓模型的图像分割改进算法》

技术简介:

针对CV(Chan-Vese)模型对低对比度和灰度不均匀图像难以分割,以及LGIF(Local and Global Intensity Fitting)模型初始轮廓曲线位置影响分割速度的问题,提出了一种在LGIF活动轮廓模型的能量泛函中添加图像聚类信息的K-LGIF(K-means-Local and Global Intensity Fitting)模型,其使用被提取图像的轮廓作为初始轮廓,不同于已有算法使用规则的图形作为模型的初始轮廓。实验结果表明,所给出的算法不仅能保证图像分割效果,而且能够减少迭代次数、缩短图像分割时间,所给出的算法模型分别比CV,LBF,LGIF模型的运算效率提高了9.22倍、2.46倍和1.42倍。


研发人员:陈树越;李颖;刘佳镔;朱军;黄萍;