《迁移拉普拉斯总间隔支持向量机》
技术简介:
为了提高半监督分类器在已标记和未标记样本的数量均不足时的分类性能,该文在迁移学习的基础上,提出了一种迁移拉普拉斯总间隔支持向量机。首先提出了联合最大均值差异度量准则,从全局和局部两方面衡量不同领域间的分布差异,并将迁移学习的思想引入半监督学习框架,提出了迁移拉普拉斯总间隔支持向量机。实现源域的知识到目标域的迁移,提高了目标域分类器的性能。8个迁移数据集上的实验结果证明,该方法能处理目标域标记和未标记数据均不足场景下的分类任务。
研发人员:陆兵;周国华;顾晓清;殷新春;