面向面部表情识别的双通道卷积神经网络

   发布时间: 2022-06-11    访问次数: 17

《面向面部表情识别的双通道卷积神经网络》

技术简介:

本发明公开了一种双通道卷积神经网络对人脸面部表情识别的方法,首先针对不同的输入图像进行预处理包括人脸检测、旋转校正、降采样以及数据样本扩充(若输入RGB图像,则将其灰度化以降低计算复杂度),从而提高人脸检测精度。其次对于样本扩充后的灰度图像,计算对应的LBP图像,从而构成双通道样本集,用于后续的模型训练与测试。然后利用双通道特征提取网络(Binary Channel-Feature Extraction Network,BC-FEN)进行人脸图像全局及局部特征的有效提取。最后利用加权融合分类网络(Weighted Merge Classify Network,WMCN)完成人脸图像的特征融合及表情分类,提高了人脸表情识别精度。

研发人员:杨彪;曹金梦;张御宇;吕继东;邹凌